Sabtu, 17 April 2010

Tugas 4 A " Sistem Digital "

Tugas 4 A “ Sistem Digital ”

Hukum Aljabar Boolean

T1. Hukum Komutatif

(a) A + B = B + A

Pembuktian:

A

B

A + B

B + A

0

0

0

0

0

1

1

1

1

0

1

1

1

1

1

1

(b) A B = B A

Pembuktian:

A

B

AB

BA

0

0

0

0

0

1

0

0

1

0

0

0

1

1

1

1

T2. Hukum Asosiatif

(a) (A + B) + C = A + (B + C)

Pembuktian:

A

B

C

A + B

B + C

(A+B)+C

A+(B+C)

0

0

0

0

0

0

0

0

0

1

0

1

1

1

0

1

0

1

1

1

1

0

1

1

1

1

1

1

1

0

0

1

0

1

1

1

0

1

1

1

1

1

1

1

0

1

1

1

1

1

1

1

1

1

1

1

(b) (A B) C = A (B C)

Pembuktian:

A

B

C

AB

BC

(AB)C

A(BC)

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

1

0

0

0

0

0

0

1

1

0

1

0

0

1

0

0

0

0

0

0

1

0

1

0

0

0

0

1

1

0

1

0

0

0

1

1

1

1

1

1

1

T3. Hukum Distributif

(a) A (B + C) = A B + A C

Pembuktian:

A

B

C

B +C

AB

AC

A(B+C)

(AB)+(AC)

0

0

0

0

0

0

0

0

0

0

1

1

0

0

0

0

0

1

0

1

0

0

0

0

0

1

1

1

0

0

0

0

1

0

0

0

0

0

0

0

1

0

1

1

0

1

1

1

1

1

0

1

1

0

1

1

1

1

1

1

1

1

1

1

(b) A + (B C) = (A + B) (A + C)

Pembuktian:

A

B

C

BC

A+B

A+C

A+(BC)

(A+B)(A+C)

0

0

0

0

0

0

0

0

0

0

1

0

0

1

0

0

0

1

0

0

1

0

0

0

0

1

1

1

1

1

1

1

1

0

0

0

1

1

1

1

1

0

1

0

1

1

1

1

1

1

0

0

1

1

1

1

1

1

1

1

1

1

1

1

T4. Hukum Identity

(a) A + A = A

Pembuktian:

A

A + A

0

0

0

0

1

1

1

1

(b) A A = A

Pembuktian:

A

A A

0

0

0

0

1

1

1

1

T5.

(a) AB + A B’

Pembuktian:

A

B

B(invers)

A B

A B(invers)

AB+AB(infers)

0

0

1

0

0

0

0

1

0

0

0

0

1

0

1

0

1

1

1

1

0

1

0

1


(b) (A+B)(A+B’)

Pembuktian:

A

B

B(invers)

A+B

A+B(invers)


0

0

1

0

1

0

0

1

0

1

0

0

1

0

1

1

1

1

1

1

0

1

1

1

T6. Hukum Redudansi

(a) A + A B = A

Pembuktian:

A

B

A B

A + A B

0

0

0

0

0

1

0

1

1

0

0

1

1

1

1

1


(b) A (A + B) = A

Pembuktian:

A

B

A + B

A (A + B)

0

0

0

0

0

1

1

0

1

0

1

1

1

1

1

1

T7

(a) 0 + A = A

Pembuktian:

A

0 + A

0

0

0

0

1

1

1

1

(b) 0 A = 0

Pembuktian:

A

0 A

0

0

0

0

0

0

0

1

0

0

1

0

0

T8

(a) 1 + A = 1

A

1 + A

1

0

1

1

0

1

1

1

1

1

1

1

1


(b) 1 A = A

Pembuktian:

A

1 A

0

0

0

0

1

1

1

1

T9

(a) A’ + A = 1

Pembuktian:

A

A(invers)

A(infers)

1

0

1

1

1

0

1

1

1

1

0

1

1

1

0

1

1


(b) A’ A=0

A

A(invers)

A(invers)A

0

0

1

0

0

0

1

0

0

1

0

0

0

1

0

0

0

T10

(a) A + A’ B =A + B

Pembuktian:

A

B

A(invers)

A(invers) B

A+B

A+A(invers) B

0

0

1

1

0

0

0

1

1

0

1

1

1

0

0

1

1

1

1

1

0

0

1

1


(b) A (A’ + B) = AB

Pembuktian:

A

B

A(invers)

A(invers)+B

A B

A(A(invers)+B)

0

0

1

1

0

0

0

1

1

1

0

0

1

0

0

0

0

0

1

1

0

1

1

1

T11. TheoremaDe Morgan's

(a) (A’+B’)= A’B

A

B

A(invers)

B(invers)

A+B

(A+B)invers

A(invers) B(invers)

0

0

1

1

0

1

1

0

1

1

0

1

0

0

1

0

0

1

1

0

0

1

1

0

0

1

0

0


(b) (A’B’) = A’ + B’

A

B

A(invers)

B(invers)

A B

(AB)invers

A(invers)+B(invers)

0

0

1

1

0

1

1

0

1

1

0

0

1

1

1

0

0

1

0

1

1

1

1

0

0

1

0

0

Tidak ada komentar:

Posting Komentar