Senin, 19 April 2010

Tugas 4 b " Sistem Digital "

1. Give the relationship that represents the dual of the Boolean property A + 1 = 1?
(Note: * = AND, + = OR and ' = NOT)
1. A * 1 = 1
2. A * 0 = 0
3. A + 0 = 0
4. A * A = A
5. A * 1 = 1

2. Give the best definition of a literal?
1. A Boolean variable
2. The complement of a Boolean variable
3. 1 or 2
4. A Boolean variable interpreted literally
5. The actual understanding of a Boolean variable

3. Simplify the Boolean expression (A+B+C)(D+E)' + (A+B+C)(D+E) and choose the best answer.
1. A + B + C
2. D + E
3. A'B'C'
4. D'E'
5. None of the above

4. Which of the following relationships represents the dual of the Boolean property x + x'y = x + y?
1. x'(x + y') = x'y'
2. x(x'y) = xy
3. x*x' + y = xy
4. x'(xy') = x'y'
5. x(x' + y) = xy

5. Given the function F(X,Y,Z) = XZ + Z(X'+ XY), the equivalent most simplified Boolean representation for F is:
1. Z + YZ
2. Z + XYZ
3. XZ
4. X + YZ
5. None of the above

6. Which of the following Boolean functions is algebraically complete?
1. F = xy
2. F = x + y
3. F = x'
4. F = xy + yz
5. F = x + y'

7. Simplification of the Boolean expression (A + B)'(C + D + E)' + (A + B)' yields which of the following results?
1. A + B
2. A'B'
3. C + D + E
4. C'D'E'
5. A'B'C'D'E'

8. Given that F = A'B'+ C'+ D'+ E', which of the following represent the only correct expression for F'?
1. F'= A+B+C+D+E
2. F'= ABCDE
3. F'= AB(C+D+E)
4. F'= AB+C'+D'+E'
5. F'= (A+B)CDE

9. An equivalent representation for the Boolean expression A' + 1 is
1. A
2. A'
3. 1
4. 0

10. Simplification of the Boolean expression AB + ABC + ABCD + ABCDE + ABCDEF yields which of the following results?
1. ABCDEF
2. AB
3. AB + CD + EF
4. A + B + C + D + E + F
5. A + B(C+D(E+F))

Sabtu, 17 April 2010

Tugas 4 A " Sistem Digital "

Tugas 4 A “ Sistem Digital ”

Hukum Aljabar Boolean

T1. Hukum Komutatif

(a) A + B = B + A

Pembuktian:

A

B

A + B

B + A

0

0

0

0

0

1

1

1

1

0

1

1

1

1

1

1

(b) A B = B A

Pembuktian:

A

B

AB

BA

0

0

0

0

0

1

0

0

1

0

0

0

1

1

1

1

T2. Hukum Asosiatif

(a) (A + B) + C = A + (B + C)

Pembuktian:

A

B

C

A + B

B + C

(A+B)+C

A+(B+C)

0

0

0

0

0

0

0

0

0

1

0

1

1

1

0

1

0

1

1

1

1

0

1

1

1

1

1

1

1

0

0

1

0

1

1

1

0

1

1

1

1

1

1

1

0

1

1

1

1

1

1

1

1

1

1

1

(b) (A B) C = A (B C)

Pembuktian:

A

B

C

AB

BC

(AB)C

A(BC)

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

1

0

0

0

0

0

0

1

1

0

1

0

0

1

0

0

0

0

0

0

1

0

1

0

0

0

0

1

1

0

1

0

0

0

1

1

1

1

1

1

1

T3. Hukum Distributif

(a) A (B + C) = A B + A C

Pembuktian:

A

B

C

B +C

AB

AC

A(B+C)

(AB)+(AC)

0

0

0

0

0

0

0

0

0

0

1

1

0

0

0

0

0

1

0

1

0

0

0

0

0

1

1

1

0

0

0

0

1

0

0

0

0

0

0

0

1

0

1

1

0

1

1

1

1

1

0

1

1

0

1

1

1

1

1

1

1

1

1

1

(b) A + (B C) = (A + B) (A + C)

Pembuktian:

A

B

C

BC

A+B

A+C

A+(BC)

(A+B)(A+C)

0

0

0

0

0

0

0

0

0

0

1

0

0

1

0

0

0

1

0

0

1

0

0

0

0

1

1

1

1

1

1

1

1

0

0

0

1

1

1

1

1

0

1

0

1

1

1

1

1

1

0

0

1

1

1

1

1

1

1

1

1

1

1

1

T4. Hukum Identity

(a) A + A = A

Pembuktian:

A

A + A

0

0

0

0

1

1

1

1

(b) A A = A

Pembuktian:

A

A A

0

0

0

0

1

1

1

1

T5.

(a) AB + A B’

Pembuktian:

A

B

B(invers)

A B

A B(invers)

AB+AB(infers)

0

0

1

0

0

0

0

1

0

0

0

0

1

0

1

0

1

1

1

1

0

1

0

1


(b) (A+B)(A+B’)

Pembuktian:

A

B

B(invers)

A+B

A+B(invers)


0

0

1

0

1

0

0

1

0

1

0

0

1

0

1

1

1

1

1

1

0

1

1

1

T6. Hukum Redudansi

(a) A + A B = A

Pembuktian:

A

B

A B

A + A B

0

0

0

0

0

1

0

1

1

0

0

1

1

1

1

1


(b) A (A + B) = A

Pembuktian:

A

B

A + B

A (A + B)

0

0

0

0

0

1

1

0

1

0

1

1

1

1

1

1

T7

(a) 0 + A = A

Pembuktian:

A

0 + A

0

0

0

0

1

1

1

1

(b) 0 A = 0

Pembuktian:

A

0 A

0

0

0

0

0

0

0

1

0

0

1

0

0

T8

(a) 1 + A = 1

A

1 + A

1

0

1

1

0

1

1

1

1

1

1

1

1


(b) 1 A = A

Pembuktian:

A

1 A

0

0

0

0

1

1

1

1

T9

(a) A’ + A = 1

Pembuktian:

A

A(invers)

A(infers)

1

0

1

1

1

0

1

1

1

1

0

1

1

1

0

1

1


(b) A’ A=0

A

A(invers)

A(invers)A

0

0

1

0

0

0

1

0

0

1

0

0

0

1

0

0

0

T10

(a) A + A’ B =A + B

Pembuktian:

A

B

A(invers)

A(invers) B

A+B

A+A(invers) B

0

0

1

1

0

0

0

1

1

0

1

1

1

0

0

1

1

1

1

1

0

0

1

1


(b) A (A’ + B) = AB

Pembuktian:

A

B

A(invers)

A(invers)+B

A B

A(A(invers)+B)

0

0

1

1

0

0

0

1

1

1

0

0

1

0

0

0

0

0

1

1

0

1

1

1

T11. TheoremaDe Morgan's

(a) (A’+B’)= A’B

A

B

A(invers)

B(invers)

A+B

(A+B)invers

A(invers) B(invers)

0

0

1

1

0

1

1

0

1

1

0

1

0

0

1

0

0

1

1

0

0

1

1

0

0

1

0

0


(b) (A’B’) = A’ + B’

A

B

A(invers)

B(invers)

A B

(AB)invers

A(invers)+B(invers)

0

0

1

1

0

1

1

0

1

1

0

0

1

1

1

0

0

1

0

1

1

1

1

0

0

1

0

0